Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(10): 2347-2359, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38416758

RESUMO

Liquid-liquid phase separation mediated by proteins and/or nucleic acids is believed to underlie the formation of many distinct condensed phases, or membraneless organelles, within living cells. These condensates have been proposed to orchestrate a variety of important processes. Despite recent advances, the interactions that regulate the dynamics of molecules within a condensate remain poorly understood. We performed accumulated 564.7 µs all-atom molecular dynamics (MD) simulations (system size ∼200k atoms) of model condensates formed by a scaffold RNA oligomer and a scaffold peptide rich in arginine (Arg). These model condensates contained one of three possible guest peptides: the scaffold peptide itself or a variant in which six Arg residues were replaced by lysine (Lys) or asymmetric dimethyl arginine (ADMA). We found that the Arg-rich peptide can form the largest number of hydrogen bonds and bind the strongest to the scaffold RNA in the condensate, relative to the Lys- and ADMA-rich peptides. Our MD simulations also showed that the Arg-rich peptide diffused more slowly in the condensate relative to the other two guest peptides, which is consistent with a recent fluorescence microscopy study. There was no significant increase in the number of cation-π interactions between the Arg-rich peptide and the scaffold RNA compared to the Lys-rich and ADMA-rich peptides. Our results indicate that hydrogen bonds between the peptides and the RNA backbone, rather than cation-π interactions, play a major role in regulating peptide diffusion in the condensate.


Assuntos
Simulação de Dinâmica Molecular , RNA , Ligação de Hidrogênio , Peptídeos/química , Proteínas , Arginina/química , Lisina/química , Cátions
2.
J Am Chem Soc ; 146(10): 6522-6529, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38417010

RESUMO

Parathyroid hormone 1 receptor (PTH1R) plays a key role in mediating calcium homeostasis and bone development, and aberrant PTH1R activity underlies several human diseases. Peptidic PTH1R antagonists and inverse agonists have therapeutic potential in treating these diseases, but their poor pharmacokinetics and pharmacodynamics undermine their in vivo efficacy. Herein, we report the use of a backbone-modification strategy to design a peptidic PTH1R inhibitor that displays prolonged activity as an antagonist of wild-type PTH1R and an inverse agonist of the constitutively active PTH1R-H223R mutant both in vitro and in vivo. This peptide may be of interest for the future development of therapeutic agents that ameliorate PTH1R malfunction.


Assuntos
Agonismo Inverso de Drogas , Receptor Tipo 1 de Hormônio Paratireóideo , Humanos , Peptídeos , Hormônio Paratireóideo/farmacologia
3.
J Am Chem Soc ; 145(51): 28030-28037, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091482

RESUMO

The gastric inhibitory polypeptide receptor (GIPR), a G protein-coupled receptor (GPCR) that regulates glucose metabolism and insulin secretion, is a target for the development of therapeutic agents to address type 2 diabetes and obesity. Signal transduction processes mediated by GPCR activation typically result in receptor phosphorylation, but very little is known about GIPR phosphorylation. Mass spectrometry (MS) is a powerful tool for detecting phosphorylation and other post-translational modifications of proteins and for identifying modification sites. However, applying MS methods to GPCRs is challenging because the native expression levels are low and the hydrophobicity of these proteins complicates isolation and enrichment. Here we use a widely available technique, trapped-ion-mobility spectrometry coupled to time-of-flight mass spectrometry (TIMS-TOF MS), to characterize the phosphorylation status of the GIPR. We identified eight serine residues that are phosphorylated, one in an intracellular loop and the remainder in the C-terminal domain. Stimulation with the native agonist GIP enhanced phosphorylation at four of these sites. For comparison, we evaluated tirzepatide (TZP), a dual agonist of the glucagon-like peptide-1 (GLP-1) receptor and the GIPR that has recently been approved for the treatment of type 2 diabetes. Stimulation with TZP enhanced phosphorylation at the same four sites that were enhanced with GIP; however, TZP also enhanced phosphorylation at a fifth site that is unique to this synthetic agonist. This work establishes an important and accessible tool for the characterization of signal transduction via the GIPR and reveals an unanticipated functional difference between GIP and TZP.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fosforilação , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Análise Espectral , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
4.
J Am Chem Soc ; 145(47): 25559-25569, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37968794

RESUMO

Short, synthetic peptides that are displayed by major histocompatibility complex I (MHC I) can stimulate CD8 T cells in vivo to destroy virus-infected or cancer cells. The development of such peptides as vaccines that provide protective immunity, however, is limited by rapid proteolytic degradation. Introduction of unnatural amino acid residues can suppress MHC I antigen proteolysis, but the modified peptides typically display lower affinity for MHC I and/or diminished ability to activate CD8 T cells relative to native antigen. Here, we report a new strategy for modifying MHC I antigens to enhance resistance to proteolysis while preserving MHC I affinity and T cell activation properties. This approach, replacing backbone amide groups with thioamides, was evaluated in two well-characterized antigens presented by HLA-A2, a common human MHC I. For each antigen, singly modified thioamide analogues retained affinity for HLA-A2 and activated T cells specific for the native antigen, as measured via interferon-γ secretion. In each system, we identified a highly potent triply substituted thioamide antigen ("thio-antigen") that displayed substantial resistance to proteolytic cleavage. Collectively, our results suggest that thio-antigens may represent a general and readily accessible source of potent vaccine candidates that resist degradation.


Assuntos
Antígeno HLA-A2 , Tioamidas , Humanos , Tioamidas/farmacologia , Tioamidas/metabolismo , Peptídeos/metabolismo , Linfócitos T CD8-Positivos , Complexo Principal de Histocompatibilidade
5.
Aust J Chem ; 76(8): 482-492, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37780415

RESUMO

The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/ß-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/ß-peptides contained cyclic ß-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides.

6.
J Am Chem Soc ; 145(37): 20539-20550, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37697685

RESUMO

We have applied an underexplored backbone modification strategy to generate new analogues of peptides that activate two clinically important class B1 G protein-coupled receptors (GPCRs). Most peptide modification strategies involve changing side chains or, less commonly, changing the configuration at side chain-bearing carbons (i.e., l residues replaced by d residues). In contrast, backbone modifications alter the number of backbone atoms and the identities of backbone atoms relative to a poly-α-amino acid backbone. Starting from the peptide agonists PTH(1-34) (the first 34 residues of the parathyroid hormone, used clinically as the drug teriparatide) and glucagon-like peptide-1 (7-36) (GLP-1(7-36)), we replaced native α-residue triads with a diad composed of a ß-amino acid residue and a γ-amino acid residue. The ß/γ diad retains the number of backbone atoms in the ααα triad. Because the ß and γ residue each bear a single side chain, we implemented ααα→ßγ replacements at sites that contained a Gly residue (i.e., at α-residue triads that presented only two side chains). All seven of the α/ß/γ-peptides derived from PTH(1-34) or GLP-1(7-36) bind to the cognate receptor (the PTHR1 or the GLP-1R), but they vary considerably in their activity profiles. Outcomes include functional mimicry of the all-α agonist, receptor-selective agonist activity, biased agonism, or strong binding with weak activation, which could lead to antagonist development. Collectively, these findings demonstrate that ααα→ßγ replacements, which are easily implemented via solid-phase synthesis, can generate peptide hormone analogues that display unique and potentially useful signaling behavior.


Assuntos
Hormônio Paratireóideo , Transdução de Sinais , Aminoácidos , Carbono , Peptídeo 1 Semelhante ao Glucagon
7.
Chembiochem ; 24(21): e202300504, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37624685

RESUMO

Agonists of the glucagon-like peptide-1 receptor (GLP-1R) are used to treat diabetes and obesity. Cryo-EM structures indicate that GLP-1 is completely α-helical when bound to the GLP-1R. The mature form of this hormone, GLP-1(7-36), contains a glycine residue near the center (Gly22). Since glycine has the second-lowest α-helix propensity among the proteinogenic α-amino acid residues, and Gly22 does not appear to make direct contact with the receptor, we were motivated to explore the impact on agonist activity of altering the α-helix propensity at this position. We examined GLP-1 analogues in which Gly22 was replaced with L-Ala, D-Ala, or ß-amino acid residues with varying helix propensities. The results suggest that the receptor is reasonably tolerant of variations in helix propensity, and that the functional receptor-agonist complex may comprise a conformational spectrum rather than a single fixed structure.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glicina , Glicina/química , Sequência de Aminoácidos , Aminoácidos/química , Conformação Proteica em alfa-Hélice , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
8.
Angew Chem Int Ed Engl ; 62(40): e202308100, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37587780

RESUMO

Peptide engineering efforts have delivered drugs for diverse human diseases. Side chain alteration is among the most common approaches to designing new peptides for specific applications. The peptide backbone can be modified as well, but this strategy has received relatively little attention. Here we show that new and favorable contacts between a His side chain on a target protein and an aromatic side chain on a synthetic peptide ligand can be engineered by rational and coordinated side chain modification and backbone extension. Side chain modification alone was unsuccessful. Binding measurements, high-resolution structural studies and pharmacological outcomes all support the synergy between backbone and side chain modification in engineered ligands of the parathyroid hormone receptor-1, which is targeted by osteoporosis drugs. These results should motivate other structure-based designs featuring coordinated side chain modification and backbone extension to enhance the engagement of peptide ligands with target proteins.


Assuntos
Histidina , Peptídeos , Humanos , Histidina/química , Sequência de Aminoácidos , Ligantes , Peptídeos/química , Proteínas
9.
J Am Chem Soc ; 145(22): 12105-12114, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235770

RESUMO

Class B1 G protein-coupled receptors (GPCRs), collectively, respond to a diverse repertoire of extracellular polypeptide agonists and transmit the encoded messages to cytosolic partners. To fulfill these tasks, these highly mobile receptors must interconvert among conformational states in response to agonists. We recently showed that conformational mobility in polypeptide agonists themselves plays a role in activation of one class B1 GPCR, the receptor for glucagon-like peptide-1 (GLP-1). Exchange between helical and nonhelical conformations near the N-termini of agonists bound to the GLP-1R was revealed to be critical for receptor activation. Here, we ask whether agonist conformational mobility plays a role in the activation of a related receptor, the GLP-2R. Using variants of the hormone GLP-2 and the designed clinical agonist glepaglutide (GLE), we find that the GLP-2R is quite tolerant of variations in α-helical propensity near the agonist N-terminus, which contrasts with signaling at the GLP-1R. A fully α-helical conformation of the bound agonist may be sufficient for GLP-2R signal transduction. GLE is a GLP-2R/GLP-1R dual agonist, and the GLE system therefore enables direct comparison of the responses of these two GPCRs to a single set of agonist variants. This comparison supports the conclusion that the GLP-1R and GLP-2R differ in their response to variations in helical propensity near the agonist N-terminus. The data offer a basis for development of new hormone analogues with distinctive and potentially useful activity profiles; for example, one of the GLE analogues is a potent agonist of the GLP-2R but also a potent antagonist of the GLP-1R, a novel form of polypharmacology.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Peptídeos , Peptídeo 1 Semelhante ao Glucagon/química , Receptor do Peptídeo Semelhante ao Glucagon 2 , Peptídeos/química , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
10.
Biophys J ; 122(4): 646-660, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36650897

RESUMO

We address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide (FP) sequences within coronavirus (CoV) spike proteins. Within the FPs of severe acute respiratory syndrome CoV 2 and Middle East respiratory syndrome CoV (MERS-CoV), a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key role in encoding hydrophobic interactions that drive viral-host cell membrane fusion. Although a non-polar triad (Leu-Leu-Phe (LLF)) is common to both FP1 sequences, and thought to dominate the encoding of hydrophobic interactions, FP1 from SARS-2 and MERS differ in two residues (Phe 2 versus Ala 2 and Asn 9 versus Asp 9, respectively). Here we explore whether single-molecule force measurements can quantify hydrophobic interactions encoded by FP1 sequences, and then ask whether sequence variations between FP1 from SARS-2 and MERS lead to significant differences in hydrophobic interactions. We find that both SARS-2 and MERS wild-type FP1 generate measurable hydrophobic interactions at the single-molecule level, but that SARS-2 FP1 encodes a substantially stronger hydrophobic interaction than its MERS counterpart (1.91 ± 0.03 nN versus 0.68 ± 0.03 nN, respectively). By performing force measurements with FP1 sequences with single amino acid substitutions, we determine that a single-residue mutation (Phe 2 versus Ala 2) causes the almost threefold difference in the hydrophobic interaction strength generated by the FP1 of SARS-2 versus MERS, despite the presence of LLF in both sequences. Infrared spectroscopy and circular dichroism measurements support the proposal that the outsized influence of Phe 2 versus Ala 2 on the hydrophobic interaction arises from variation in the secondary structure adopted by FP1. Overall, these insights reveal how single-residue diversity in viral FPs, including FP1 of SARS-CoV-2 and MERS-CoV, can lead to substantial changes in intermolecular interactions proposed to play a key role in viral fusion, and hint at strategies for regulating hydrophobic interactions of peptides in a range of contexts.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Coronavírus da Síndrome Respiratória do Oriente Médio , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeos/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus
11.
Proc Natl Acad Sci U S A ; 119(48): e2212736119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409914

RESUMO

The parathyroid hormone type 1 receptor (PTHR1), a Class B GPCR, is activated by long polypeptides, including drugs for osteoporosis and hypoparathyroidism. The PTHR1 engages peptide agonists via a two-step mechanism. Initial contact involves the extracellular domain (ECD), which has been thought to contribute primarily to receptor-peptide binding, and then the N terminus of the peptide engages the receptor transmembrane domain (TMD), which is thought to control the message conveyed to intracellular partners. This mechanism has been suggested to apply to other Class B GPCRs as well. Here, we show that modification of a PTHR1 agonist at ECD-contact sites can alter the signaling profile, an outcome that is not accommodated by the current two-step binding model. Our data support a modified two-step binding model in which agonist orientation on the ECD surface can influence the geometry of agonist-TMD engagement. This expanded binding model offers a mechanism by which altering ECD-contact residues can affect signaling profile. Our discoveries provide a rationale for exploring agonist modifications distal from the TMD-contact region in future efforts to optimize therapeutic performance of peptide hormone analogs.


Assuntos
Receptor Tipo 1 de Hormônio Paratireóideo , Transdução de Sinais , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Ligação Proteica , Domínios Proteicos , Peptídeos/metabolismo
12.
ACS Chem Biol ; 17(11): 3148-3158, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36282520

RESUMO

Polypeptides that activate the parathyroid hormone receptor-1 (PTHR1) are important in human physiology and medicine. Most previous studies of peptide binding to this receptor have involved the displacement of a radiolabeled ligand. We report a new assay format based on bioluminescence resonance energy transfer (BRET). Fusion of a NanoLuc luciferase (nLuc) unit to the N-terminus of the PTHR1 allows the direct detection of binding by an agonist peptide bearing a tetramethylrhodamine (TMR) unit. Affinity measurements from the BRET assay align well with results previously obtained via radioligand displacement. The BRET assay offers substantial operational benefits relative to affinity measurements involving radioactive compounds. The convenience of the new assay allowed us to explore several questions raised by earlier reports. For example, we show that although the first two residues of PTH(1-34) (the drug teriparatide) are critical for PTHR1 activation, these two residues contribute little or nothing to affinity. Comparisons among the well-studied agonists PTH(1-34), PTHrP(1-34), and "long-acting PTH" (LA-PTH) reveal that the high affinity of LA-PTH arises largely from a diminished rate constant for dissociation relative to the other two. A D-peptide recently reported to be comparable to PTH(1-34) as an agonist of the PTHR1 was found not to bind detectably to the receptor and to be a very weak agonist.


Assuntos
Hormônio Paratireóideo , Receptor Tipo 1 de Hormônio Paratireóideo , Humanos , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/química , Luciferases , Termodinâmica , Fragmentos de Peptídeos/metabolismo
14.
J Am Chem Soc ; 144(23): 10386-10395, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35639776

RESUMO

Liquid-liquid phase separation (LLPS), the spontaneous formation of contiguous liquid phases with distinct compositions, has been long known in chemical systems and more recently recognized as a ubiquitous feature of cell biology. We describe a system involving biologically relevant components, synthetic peptides, and total yeast RNA, that has enabled us to explore factors that underlie phase separation. Coulombic complementarity between a cationic peptide and anionic RNA is necessary but not sufficient for formation of a condensed phase in our system. In addition to a net positive charge, the peptide must present the proper type of cationic moiety. Guanidinium groups, as found in the Arg side chain, support phase separation, but ammonium groups, as found in the Lys side chain, or dimethylguanidinium groups, as found in post-translationally modified Arg side chains, do not support phase separation in our system. However, the cationic groups that do not support phase separation via interaction with RNA can nevertheless enable recruitment to a condensed phase, which reveals that the network of forces governing condensed phase formation can differ from the network of forces governing recruitment to such a phase. We introduce a new method for measuring the concentrations of components in condensed phases based on fluorine-containing additives and 19F NMR.


Assuntos
Peptídeos , RNA , Cátions , Guanidina , Espectroscopia de Ressonância Magnética , Peptídeos/química
15.
J Am Chem Soc ; 144(22): 9610-9617, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613436

RESUMO

Aberrant tumor necrosis factor-α (TNFα) signaling is associated with many inflammatory diseases. The homotrimeric quaternary structure of TNFα is essential for receptor recognition and signal transduction. Previously, we described an engineered α/ß-peptide inhibitor that potently suppresses TNFα activity and resists proteolysis. Here, we present structural evidence that both the α/ß-peptide inhibitor and an all-α analogue bind to a monomeric form of TNFα. Calorimetry data support a 1:1 inhibitor/TNFα stoichiometry in solution. In contrast, previous cocrystal structures involving peptide or small-molecule inhibitors have shown the antagonists engaging a TNFα dimer. The structural data reveal why our inhibitors favor monomeric TNFα. Previous efforts to block TNFα-induced cell death with peptide inhibitors revealed that surfactant additives to the assay conditions cause a more rapid manifestation of inhibitory activity than is observed in the absence of additives. We attributed this effect to a loose surfactant TNFα association that lowers the barrier to trimer dissociation. Here, we used the new structural data to design peptide inhibitors bearing a surfactant-inspired appendage intended to facilitate TNFα trimer dissociation. The appendage modified the time course of protection from cell death.


Assuntos
Inibidores de Proteases , Fator de Necrose Tumoral alfa , Peptídeo Hidrolases/metabolismo , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Transdução de Sinais , Tensoativos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
16.
J Am Chem Soc ; 144(5): 2225-2232, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077169

RESUMO

Use of a tunable molecular scaffold to align a reactive diad for bifunctional catalysis can reveal relationships between functional group identity and reactivity that might otherwise be impossible to identify. Here we use an α/ß-peptide helix to show that an aligned pair of primary amine groups is uniquely competent to catalyze crossed aldol condensations with an aryl aldehyde as the electrophile. Geometrically similar diads in which one amine group is secondary, or both are secondary, are good catalysts for other types of aldol condensations but not those involving an aryl aldehyde. Catalytic efficacy requires ß-amino acid residues that are preorganized for helix formation via cyclic constraint. Conventional peptides (exclusively α-amino acid residues) that display the primary amine diad are poor catalysts, which highlights the critical role of the foldamer scaffold.


Assuntos
Peptídeos/química , Aldeídos/química , Sequência de Aminoácidos , Catálise
17.
J Am Chem Soc ; 144(4): 1690-1699, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007085

RESUMO

Interest in developing antibacterial polymers as synthetic mimics of host defense peptides (HPDs) has accelerated in recent years to combat antibiotic-resistant bacterial infections. Positively charged moieties are critical in defining the antibacterial activity and eukaryotic toxicity of HDP mimics. Most examples have utilized primary amines or guanidines as the source of positively charged moieties, inspired by the lysine and arginine residues in HDPs. Here, we explore the impact of amine group variation (primary, secondary, or tertiary amine) on the antibacterial performance of HDP-mimicking ß-peptide polymers. Our studies show that a secondary ammonium is superior to either a primary ammonium or a tertiary ammonium as the cationic moiety in antibacterial ß-peptide polymers. The optimal polymer, a homopolymer bearing secondary amino groups, displays potent antibacterial activity and the highest selectivity (low hemolysis and cytotoxicity). The optimal polymer displays potent activity against antibiotic-resistant bacteria and high therapeutic efficacy in treating MRSA-induced wound infections and keratitis as well as low acute dermal toxicity and low corneal epithelial cytotoxicity. This work suggests that secondary amines may be broadly useful in the design of antibacterial polymers.


Assuntos
Aminas/química , Antibacterianos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Peptídeos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Ceratite/patologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia , Polímeros/química , Infecções Estafilocócicas/microbiologia , Infecção dos Ferimentos/microbiologia
18.
Nat Chem Biol ; 18(3): 256-263, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34937906

RESUMO

Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide 1 receptor (GLP-1R), an important clinical target. We use variants of the peptides GLP-1 and exendin-4 (Ex4) to explore the interplay between helical propensity near the agonist N terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an Ex4 analog, the GLP-1R and Gs heterotrimer revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data, along with molecular dynamics (MD) simulations, suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Exenatida , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Peptídeos/química , Domínios Proteicos
19.
Biophys J ; 120(23): 5243-5254, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34757079

RESUMO

Synthetic, cationic random nylon-3 polymers (ß-peptides) show promise as inexpensive antimicrobial agents less susceptible to proteolysis than normal peptides. We have used superresolution, single-cell, time-lapse fluorescence microscopy to compare the effects on live Escherichia coli cells of four such polymers and the natural antimicrobial peptides LL-37 and cecropin A. The longer, densely charged monomethyl-cyclohexyl (MM-CH) copolymer and MM homopolymer rapidly traverse the outer membrane and the cytoplasmic membrane. Over the next ∼5 min, they locally rigidify the chromosomal DNA and slow the diffusive motion of ribosomal species to a degree comparable to LL-37. The shorter dimethyl-dimethylcyclopentyl (DM-DMCP) and dimethyl-dimethylcyclohexyl (DM-DMCH) copolymers, and cecropin A are significantly less effective at rigidifying DNA. Diffusion of the DNA-binding protein HU and of ribosomal species is hindered as well. The results suggest that charge density and contour length are important parameters governing these antimicrobial effects. The data corroborate a model in which agents having sufficient cationic charge distributed across molecular contour lengths comparable to local DNA-DNA interstrand spacings (∼6 nm) form a dense network of multivalent, electrostatic "pseudo-cross-links" that cause the local rigidification. In addition, at times longer than ∼30 min, we observe that the MM-CH copolymer and the MM homopolymer (but not the other four agents) cause gradual coalescence of the two nucleoid lobes into a single dense lobe localized at one end of the cell. We speculate that this process involves coacervation of the DNA by the cationic polymer, and may be related to the liquid droplet coacervates observed in eukaryotic cells.


Assuntos
Nylons , Polímeros , Peptídeos Antimicrobianos , DNA/genética , Escherichia coli/genética
20.
Sci Signal ; 14(703): eabc5944, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34609896

RESUMO

The parathyroid hormone (PTH) type 1 receptor (PTHR) is a class B G protein­coupled receptor (GPCR) that regulates mineral ion, vitamin D, and bone homeostasis. Activation of the PTHR by PTH induces both transient cell surface and sustained endosomal cAMP production. To address whether the spatial (location) or temporal (duration) dimension of PTHR-induced cAMP encodes distinct biological outcomes, we engineered a biased PTHR ligand (PTH7d) that elicits cAMP production at the plasma membrane but not at endosomes. PTH7d stabilized a unique active PTHR conformation that mediated sustained cAMP signaling at the plasma membrane due to impaired ß-arrestin coupling to the receptor. Experiments in cells and mice revealed that sustained cAMP production by cell surface PTHR failed to mimic the pharmacological effects of sustained endosomal cAMP production on the abundance of the rate-limiting hydroxylase catalyzing the formation of active vitamin D, as well as increases in circulating active vitamin D and Ca2+ and in bone formation in mice. Thus, similar amounts of cAMP generated by PTHR for similar lengths of time in different cellular locations, plasma membrane and endosomes, mediate distinct physiological responses. These results unveil subcellular signaling location as a means to achieve specificity in PTHR-mediated biological outcomes and raise the prospect of rational drug design based upon spatiotemporal manipulation of GPCR signaling.


Assuntos
Hormônio Paratireóideo , Receptores de Hormônios Paratireóideos , AMP Cíclico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...